
Quantum-Safe Crypto 
Why & How?
JP Aumasson, Kudelski Security







Flight plan
• What’s a quantum computer? 

• How broken are your public keys? 

• AES vs. quantum search  

• Hidden quantum powers 

• Defeating quantum computing 

• Hash functions to the rescue



Qubits instead of bits

Qubit   α |0⟩ + β |1⟩
0 with probability | α |2 
1 with probability | β |2 

Stay 0 or 1 forever 
Generalizes to more than 2 states: qutrits, qubytes, etc. 

Complex, negative probabilities (amplitudes), real randomness

Measure



Quantum computer
Just high-school linear algebra  

Quantum registers, a bunch of quantum states 
~ N qubits encode a list of 2N amplitudes 

Quantum assembly instructions  
~ Matrix multiplications preserving amplitudes' normalization 

Quantum circuits usually end with a measurement 

Can’t be simulated classically! (needs 2N storage/compute) 



Quantum speedup
When quantum computers can solve a problem faster than 
classical computers 

Most interesting: Superpolynomial quantum speedup 

List on the Quantum Zoo: http://math.nist.gov/quantum/zoo/  
 

http://math.nist.gov/quantum/zoo/


Quantum parallelism
Quantum computers sort of encode all values simultaneously 
But they do not try every answer in parallel and pick the best one  

Quantum parallelism is a more complicated notion… 
  



NP-complete problems
• Solution hard to find, but easy to verify 
• SAT, scheduling, Candy Crush, etc. 
• Sometimes used in crypto 

Can’t be solved faster with quantum computers 

NP-Complete 
(hard)

BPP (quantum-easy) 

P (classical-easy)



How broken are your public keys?



Shor them all
Shor’s algorithm finds a structure in abelian subgroups: 

• Finds p given n = pq 

• Finds d given y = xd mod p 
                                           

Fast on a quantum computer 

Practically impossible classically 

#ExponentialSpeedup



How bad is it?
Cool: signatures

• Reissue signatures with a post-quantum algorithm 

Bad: key agreement

• Can be mitigated with secret states (ratcheting) 

Ugly: encryption

• Encrypted messages compromised forever 



We’re not there yet

(log scale)





AES vs. quantum search



AES

NIST’s “Advanced Encryption Standard” 

• THE symmetric encryption standard 

• Supports keys of 128, 192, or 256 bits 

• Everywhere: TLS, SSH, IPsec, quantum links, etc.



Quantum search

Grover’s algorithm: searches in N items in √N queries! 

=> AES broken in √(2128) = 264 operations

Caveats behind this simplistic view: 

• It’s actually O(√N), constant factor in O()’s may be huge 

• Doesn’t easily parallelize as classical search does



Quantum-searching AES keys

If gates are the size of a hydrogen atom (12pm) this depth 
is the diameter of the solar system (~1013m)  
(Yet worth less than 5 grams of hydrogen) 

No doubts more efficient circuits will be designed… 

https://arxiv.org/pdf/1512.04965v1.pdf 

https://arxiv.org/pdf/1512.04965v1.pdf


Grover is not a problem… 

… just double key length 

And that’s it, problem solved!



Hidden quantum powers



Crypto algorithms aren’t 
black boxes



Can sometimes be viewed as  
quantum-friendly algorithms

https://arxiv.org/pdf/1602.05973v3.pdf  

#QuantumSpeedup  

https://arxiv.org/pdf/1602.05973v3.pdf


Simon’s problem 
The poster child of quantum exponential speedups: 

• Black box function f from n-bit strings to n-bit strings 

• Find the value M such that for any X:  f(X) = f(X ⊕ M) 
(Such M is guaranteed to exist) 

O(2n/2) classically, O(n) quantumly!

Breaks authentication in AES modes GCM and OCB!  

Caveat: needs superposition queries (unlikely)



Defeating quantum computing



Image credit: crypto company Dyadic Security



Post-quantum crypto
A.k.a. “quantum-safe”, “quantum-resilient” 

Algorithms not broken by a quantum computer… 

• Must not rely on factoring or discrete log problems 

• Must be well-understood with respect to quantum 

Have sometimes been broken.. classically   ¯\_(ツ)_/¯  



Why care?

Insurance against QC threat: 

• “QC has a probability p work in year 2YYY” 

• “I’d like to eliminate this risk" 



Why care?

NSA recommendations for National Security Systems  

"we anticipate a need to shift to quantum-resistant 
cryptography in the near future.” 

(In CNSS advisory 02-15) 



Why care?



Lattice-based crypto
Based on problems such as learning with errors (LWE):  

• S a secret vector of numbers modulo q 

• Receive pairs for (A, B = <S, A> + E) 
- A known, uniformly random 
- E unknown Gaussian distribution 

Goal: find S, or distinguish (A, B) from uniform random



Lattice-based crypto



Lattice-based crypto



Challenges with lattices

• Estimate security level for given parameters 

• Make sure that it’s secure against all computers



More post-quantumness

• Based on coding theory (McEliece, Niederreiter): 
- Solid foundations (late 1970s)  
- Large keys (dozen kBs) 
- Encryption only 

• Based on multivariate polynomials evaluation 
- Secure in theory, not always in practice 
- Mostly for signatures



Hash functions to the rescue



Hash functions

• Input of any size, output of 256 or 512 bits 

• Can’t invert, can’t find collisions 

• BLAKE2, SHA-3, SHA-256, SHA-1, MD5… 



Hash-based signatures

Unique compared to other post-quantum schemes: 

• No mathematical/structured hard problem 

• As secure as underlying hash functions 

• Good news: we have secure hash functions!



Hash-based signatures

But there’s a catch…



Hash-based signatures

• Not fast (but not always a problem) 

• Large signatures (dozen of kBs) 

• Statefulness problem… 



One-time signatures

Lamport, 1979: 

1. Generate a key pair 
- Pick random strings K0 and K1 (your private key) 
- The public key is the two values H(K0), H(K1) 

2. To sign the bit 0, show K0, to sign 1 show K1



One-time signatures

• Need as many keys as there are bits 

• A key can only be used once



Sign more than 0 and 1

Winternitz, 1979: 

1. Public key is H(H(H(H(…. (K)…)) = Hw(K). (w times) 

2. To sign a number x in [0; w – 1], compute S=Hx(K) 

Verification: check that Hw-x(S) = public key 

A key must still be used only once



Few-time signatures
HORS (Hash to Obtain Random Subset)  
Reyzin, Reyzin, 2002 

To sign M, use a selection function S: M → indexes 

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)



Few-time signatures
HORS (Hash to Obtain Random Subset)  
Reyzin, Reyzin, 2002 

To sign M, use a selection function S: M → indexes 

For example, if S(M) = {1, 5} publish K1 and K5

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)



Few-time signatures
HORS (Hash to Obtain Random Subset)  
Reyzin, Reyzin, 2002 

To sign M, use a selection function S: M → indexes 

Then if S(M') = {2, 3} publish K2 and K3

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)



Few-time signatures
HORS (Hash to Obtain Random Subset)  
Reyzin, Reyzin, 2002 

To sign M, use a selection function S: M → indexes 

If too many messages signed, signatures guessable

1 2 3 4 5 … n

Private keys K1 K2 K3 K4 K5 … Kn

↓ ↓ ↓ ↓ ↓ ↓

Public keys H(K1) H(K2) H(K3) H(K4) H(K5) … H(Kn)



Many-time signatures
Actually, just one-time signatures, but many keys… 

… represented in a compact way, using a hash tree 

K1

H(K1)

K2

H(K2)

K3

H(K3)

K4

H(K4)

H( H(K1) || H(K2) ) H( H(K3) || H(K4) )

H( H( H(K1) || H(K2) ) || H( H(K3) || H(K4) ) )Pub key =



Many-time signatures
When a new one-time public key Ki, is used…  

… give its authentication path to the root pub key

K1

H(K1)

K2

H(K2)

K3

H(K3)

K4

H(K4)

H( H(K1) || H(K2) ) H( H(K3) || H(K4) )

H( H( H(K1) || H(K2) ) || H( H(K3) || H(K4) ) )Pub key =



State-of-the-art schemes
• XMSS: custom hash trees and Winternitz signatures 

• SPHINCS: similar plus HORS few-time signatures 
- Uses trees of trees (“hypertrees") 
- Avoids the need for a persistent state (stateless)



Conclusion



When/if a scalable and 
quantum computer is built… 
• Public keys could be broken after some effort… 

• Symmetric-key security will be at most halved 

• We’ll have NIST-standardized algorithms 
- Likely a lattice-based key agreement 
- Likely a hash-based signature scheme 
- ?



Thank you!


